(Wikipedia)

In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for integers, where numbers “wrap around” after they reach a certain value—the modulus.  Modular arithmetic was introduced by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

A familiar use of modular arithmetic is its use in the 12-hour clock, in which the day is divided into two 12 hour periods.  If the time is 7:00 now, then 8 hours later it will be 3:00.  Usual addition would suggest that the later time should be 7 + 8 = 15, but this is not the answer because clock time “wraps around” every 12 hours; there is no “15 o’clock”.  Likewise, if the clock starts at 12:00 (noon) and 21 hours elapse, then the time will be 9:00 the next day, rather than 33:00.  Since the hour number starts over when it reaches 12, this is arithmetic modulo 12.[1]

Modular arithmetic is referenced in number theory, group theory, ring theory, knot theory, abstract algebra, cryptography, computer science, chemistry and the visual and musical arts.

It is one of the foundations of number theory, touching on almost every aspect of its study, and provides key examples for group theory, ring theory and abstract algebra.

In cryptography, modular arithmetic directly underpins public key systems such as RSA and Diffie-Hellman, as well as providing finite fields which underlie elliptic curves, and is used in a variety of symmetric key algorithms including AES, IDEA, and RC4.

In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-width, cyclic data structures.  The modulo operation, as implemented in many programming languages and calculators, is an application of modular arithmetic that is often used in this context.

In chemistry, the last digit of the CAS registry number (a number which is unique for each chemical compound) is a check digit, which is calculated by taking the last digit of the first two parts of the CAS registry number times 1, the next digit times 2, the next digit times 3 etc., adding all these up and computing the sum modulo 10.

In music, arithmetic modulo 12 is used in the consideration of the system of twelve-tone equal temperament, where octave and enharmonic equivalency occurs (that is, pitches in a 1∶2 or 2∶1 ratio are equivalent, and C-sharp is considered the same as D-flat).

The method of casting out nines offers a quick check of decimal arithmetic computations performed by hand. It is based on modular arithmetic modulo 9, and specifically on the crucial property that 10 ≡ 1 (mod 9).

More generally, modular arithmetic also has application in disciplines such as law (see e.g., apportionment), economics, (see e.g., game theory) and other areas of the social sciences, where proportional division and allocation of resources plays a central part of the analysis.

Kryptosfan

Advertisements