In cryptography, a stream cipher is a symmetric key cipher where plaintext bits are combined with a pseudorandom cipher bit stream (keystream), typically by an exclusive-or (xor) operation. In a stream cipher the plaintext digits are encrypted one at a time, and the transformation of successive digits varies during the encryption. An alternative name is a state cipher, as the encryption of each digit is dependent on the current state. In practice, the digits are typically single bits or bytes.

Stream ciphers represent a different approach to symmetric encryption from block ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying transformation. This distinction is not always clear-cut: in some modes of operation, a block cipher primitive is used in such a way that it acts effectively as a stream cipher. Stream ciphers typically execute at a higher speed than block ciphers and have lower hardware complexity. However, stream ciphers can be susceptible to serious security problems if used incorrectly: see stream cipher attacks — in particular, the same starting state must never be used twice.

Stream ciphers can be viewed as approximating the action of a proven unbreakable cipher, the one-time pad (OTP), sometimes known as the Vernam cipher. A one-time pad uses a keystream of completely random digits. The keystream is combined with the plaintext digits one at a time to form the ciphertext. This system was proved to be secure by Claude Shannon in 1949. However, the keystream must be (at least) the same length as the plaintext, and generated completely at random. This makes the system very cumbersome to implement in practice, and as a result the one-time pad has not been widely used, except for the most critical applications.

A stream cipher makes use of a much smaller and more convenient key — 128 bits, for example. Based on this key, it generates a pseudorandom keystream which can be combined with the plaintext digits in a similar fashion to the one-time pad. However, this comes at a cost: because the keystream is now pseudorandom, and not truly random, the proof of security associated with the one-time pad no longer holds: it is quite possible for a stream cipher to be completely insecure.

Synchronous stream ciphers

In a synchronous stream cipher a stream of pseudo-random digits is generated independently of the plaintext and ciphertext messages, and then combined with the plaintext (to encrypt) or the ciphertext (to decrypt). In the most common form, binary digits are used (bits), and the keystream is combined with the plaintext using the exclusive or operation (XOR). This is termed a binary additive stream cipher.

In a synchronous stream cipher, the sender and receiver must be exactly in step for decryption to be successful. If digits are added or removed from the message during transmission, synchronisation is lost. To restore synchronisation, various offsets can be tried systematically to obtain the correct decryption. Another approach is to tag the ciphertext with markers at regular points in the output.

If, however, a digit is corrupted in transmission, rather than added or lost, only a single digit in the plaintext is affected and the error does not propagate to other parts of the message. This property is useful when the transmission error rate is high; however, it makes it less likely the error would be detected without further mechanisms. Moreover, because of this property, synchronous stream ciphers are very susceptible to active attacks — if an attacker can change a digit in the ciphertext, he might be able to make predictable changes to the corresponding plaintext bit; for example, flipping a bit in the ciphertext causes the same bit to be flipped in the plaintext.

Self-synchronizing stream ciphers

Another approach uses several of the previous N ciphertext digits to compute the keystream. Such schemes are known as self-synchronizing stream ciphers, asynchronous stream ciphers or ciphertext autokey (CTAK). The idea of self-synchronization was patented in 1946, and has the advantage that the receiver will automatically synchronise with the keystream generator after receiving N ciphertext digits, making it easier to recover if digits are dropped or added to the message stream. Single-digit errors are limited in their effect, affecting only up to N plaintext digits.

An example of a self-synchronising stream cipher is a block cipher in cipher-feedback mode (CFB).

For a stream cipher to be secure, its keystream must have a large period and it must be impossible to recover the cipher’s key or internal state from the keystream. Cryptographers also demand that the keystream be free of even subtle biases that would let attackers distinguish a stream from random noise, and free of detectable relationships between keystreams that correspond to related keys or related nonces. This should be true for all keys (there should be no weak keys), and true even if the attacker can know or choose some plaintext or ciphertext.

As with other attacks in cryptography, stream cipher attacks can be certificational, meaning they aren’t necessarily practical ways to break the cipher but indicate that the cipher might have other weaknesses.

Securely using a secure synchronous stream cipher requires that one never reuse the same keystream twice; that generally means a different nonce or key must be supplied to each invocation of the cipher. Application designers must also recognize that most stream ciphers don’t provide authenticity, only privacy: encrypted messages may still have been modified in transit.

Short periods for stream ciphers have been a practical concern. For example, 64-bit block ciphers like DES can be used to generate a keystream in output feedback (OFB) mode. However, the resulting stream has a period of around 232 blocks on average; for many applications, this period is far too low. For example, if encryption is being performed at a rate of 8 megabytes per second, a stream of period 232 blocks will repeat after about a half an hour.

Some applications using the stream cipher RC4 are attackable because of weaknesses in RC4’s key setup routine; new applications should either avoid RC4 or make sure all keys are unique and ideally unrelated (e.g., generated by a cryptographic hash function) and that the first bytes of the keystream are discarded.

United States National Security Agency documents sometimes use the term combiner-type algorithms, referring to algorithms that use some function to combine a pseudorandom number generator (PRNG) with a plaintext stream.

This dramatically escalates the complexity if considered for K4 while becoming as secure as a one-time pad.  The benefits to considering a one-time pad are that we actually have some text or textual hints to consider pursuing.  With a stream cipher, it is essentially impossible for folks like me to solve K4 and we must bow out and allow the more technologically savvy to pursue these efforts.

Kryptosfan